Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper introduces a computational framework to reconstruct and forecast a partially observed state that evolves according to an unknown or expensive-to-simulate dynamical system. Our reduced-order autodifferentiable ensemble Kalman filters (ROAD-EnKFs) learn a latent low-dimensional surrogate model for the dynamics and a decoder that maps from the latent space to the state space. The learned dynamics and decoder are then used within an EnKF to reconstruct and forecast the state. Numerical experiments show that if the state dynamics exhibit a hidden low-dimensional structure, ROAD-EnKFs achieve higher accuracy at lower computational cost compared to existing methods. If such structure is not expressed in the latent state dynamics, ROAD-EnKFs achieve similar accuracy at lower cost, making them a promising approach for surrogate state reconstruction and forecasting.more » « less
-
Abstract This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Matérn-type Gaussian field priors that enable flexible modeling near the boundaries, representing boundary values by superposition of harmonic functions with appropriate Dirichlet boundary conditions. We also investigate the graph-based approximation of forward models from PDE parameters to observed quantities. In the construction of graph-based prior and forward models, we leverage the ghost point diffusion map algorithm to approximate second-order elliptic operators with classical boundary conditions. Numerical results validate our graph-based approach and demonstrate the need to design prior covariance models that account for boundary conditions.more » « less
-
null (Ed.)Importance sampling is used to approximate Bayes’ rule in many computational approaches to Bayesian inverse problems, data assimilation and machine learning. This paper reviews and further investigates the required sample size for importance sampling in terms of the χ2-divergence between target and proposal. We illustrate through examples the roles that dimension, noise-level and other model parameters play in approximating the Bayesian update with importance sampling. Our examples also facilitate a new direct comparison of standard and optimal proposals for particle filtering.more » « less
-
This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory.more » « less
An official website of the United States government

Full Text Available